Chemistry of Stripping


We talk about things being as solid and eternal as a rock. But how durable are rocks? Especially with the onslaught of water and carbon dioxide? As our roads are rocks mixed with a cement, either portland cement or asphalt cement, this is an important issue. In this blog I am discussing asphalt concrete, i.e., roads, particularly those with rocks made of granite and basalt.

For clarity, let me describe an almost marriage ending disaster from working with bentonite, which has a composition not that different from granite or basalt. I needed about a pound of sodium bentonite but had to buy 50 pounds. I had just started my business and was working in my garage. What to do with the excess 49 pounds? Well, spread in my wife’s garden of course. Bentonite is a mucky clay, which turned her garden in a field of muck. Fortunately I knew that adding lime would turn the sodium bentonite into calcium bentonite which is friable, eliminating the muck. Bentonite consists of platelets of an aluminate layer sandwiched between two silicate layers. Within the crystal structures of the aluminates and the silicates are other atoms such as potassium, sodium, calcium, magnesium, iron etc. These impurities leave “holes” in the crystal structures that carry a negative charge, which must be neutralized with what are called exchangeable ions, which is what saved my marriage. Bentonite doesn’t care what is on the outside as long as it is positive! Calcium from lime is positive.

Clays are the weathering product of rocks.

The challenge with asphalt pavements is to keep the asphalt stuck to the rocks to prevent loss of strength in the pavement.  That loss of strength can come from absorption of water by the asphalt (very rare) or the asphalt becoming unglued from the rocks. As some rocks like water much better than they like asphalt, this is a challenge.

Like bentonite clay, there should be exchangeable ions on the surface of the aggregate; ions that really, really like water. There are products, however, that can stop water sensitivity of the asphalt and which can also make the rocks like asphalt.

Sticking Asphalt to Rocks

What happens at a surface of a rock when water and oil (asphalt) is very complex. I shan’t dwell on the chemistry, much of which is discussed in papers on drilling of oil. It essentially depends on the energies. There are several forces that can come to bear. The weakest are called van der Waals bonds. These bonds are from the natural cohesive forces of molecules causing them to pack closely together.

Wetting of a surface is the result of adhesive and cohesive forces involved, and the energies involved.

The next binding forces are ionic, that is, positive molecules attracted to negative molecules. Although these binding energies can be very high, in solution these ions are mobile, and can be exchanged if they are on the surface of a rock.

A third bond is called covalent, in which atoms share electrons. The bonds that hold rocks together are covalent.

The loss of the bond between asphalt and rocks is called stripping.

There are several materials available to help the asphalt stick to the aggregate with aggregates that have a stripping problem.

Amines. Some of the common antistrips are based upon amines. If the problem is the result of the asphalt, the amines would react with any organic acids, neutralizing the problem. They also would replace sodium and potassium ions on the rock, thus providing resistance to stripping. There are data, however suggesting that that resistance could be lost over time, especially in the presence of salt or magnesium chloride. That replacement might occur from what is called mass action in chemistry.

Lime. Lime also provides stripping resistance, and also can react with the aggregate. There are data suggesting that the ability of the lime to provide protection can diminish with time, however it has generally performed well.

Latex Adding a polymer latex to the aggregate prior to entering the dryer and adding the asphalt has performed well.

Organosilicate. A fourth approach is to bond an organosilicon molecule that is un-wetable directly to the rock with a covalent bond that is as strong as the rock itself. That type of antistrip has performed well even in the presence of salt.

If the HMA cannot be protected from water damage, no other mix property has meaning. With traffic, water damaged pavement comes apart.

Robert L. Dunning, chemistdunning@gmail.com, www.petroleumsciences.com



Resisting Failure if Treated with Care


A pavement is about 93-96% rock, by weight, however it seems that there is a strong belief that by properly modifying the asphalt all problems can be solved. Asphalt or more properly, asphalts have served us well, even before modification. The properties of asphalts are primarily determined by their crude sources, however blending crudes or asphalts can at times produce an asphalt that performs better than either of the components. Modifying asphalts can also enhance their properties. However, it is important that we keep in mind that its performance depends to a great extent to its ability to flow, and its ability to suppress hardening as time goes.

Rutting is Not an Asphalt Failure. Asphalt is a liquid whose job is to flow in response to stress. If a pavement ruts, it is either ground by studded tires, or the aggregate size or the gradation is improper. If the stress is greater than the aggregate can handle, rutting occurs with the asphalt doing what it is designed to do, flow. Modifying the asphalt can affect how fast the flow occurs, however it is the aggregate properties that affect the rutting.

Many Aggregates Prefer Water to Asphalt. Asphalt doesn’t work well if it can’t stick to aggregate. Water can interfere with adhesion. One cause can be in the asphalt itself. If it is produced from crude oil that had been treated with caustic soda, it will contain soaps that will make the asphalt itself water sensitive. That has been solved by lime treating the crude. Antistrips are used to aid adhesion; however it has been shown that with some antistrips the effect wears off which allows water to lift the asphalt off of the rocks. There is one antistrip that combines chemically to aggregate and provides long term durability.

Non-load Associated Cracking Occurs when the Asphalt Cannot Relax Stresses. The fluidity of the asphalt is essential to prevent cracking. Trying to make the asphalt stronger only makes the matter worse as its maximum tensile strength is about 1000 psi. Portland cement cannot defeat thermal stress so don’t expect asphalt to do so. The solution is to have a binder that can relax stresses faster than they build up.

Pavement Slippage. Slippage occurs when of tack coats and primes are not used properly.

Fatigue Failure. There are suggestions that asphalt could be modified to increase its stiffness so that the pavement thickness could be reduced. Again it must be remembered that it is the aggregate that carries the load, in compression, not the asphalt. However fatigue failure occurs in tension, and again the tensile strength of asphalt is much less than that of aggregate. The pavement is stretched underneath the wheel path, and between the wheel paths. However, tensile failure is often really crack propagation, thus additives that stop crack propagation such as tire buffings may be of value.

chemistdunning@gmail.com, http://www.petroleumsciences.com