WATER CAUSED PAVEMENT DISTRESS

Raveling

Raveling is the loss of the mastic matrix in the surface of a pavement. This would be expected to occur with time but is aggravated by the presence of water. If the aggregate surface is not protected from water, traffic will cause raveling. This can be seen near curbs where often water is flowing. The asphalt is not pulled off but is floated off.

Water, a blessing and a bane! To get compaction in a subgrade or base, the water content must be at an option. A blessing. Even with cold recycling systems, the total liquid content (including water) must be optimum to get proper compaction. A blessing again. Obviously we love water, especially on a hot day. If we had a choice of a cool glass of water or a glass of warm lard, we would obviously choose water. Most aggregates are no different. If they have a choice, they would choose water to imbibe into their pores, not asphalt.

Our production system forcibly removes water from aggregate and equally forcibly makes the aggregate accept asphalt. That doesn’t make the aggregate happy and if it has the chance it will invite water back in through any defect in the coating and gleefully kick the asphalt off. Many aggregates have hydroxyl groups sticking out on the surface, which attracts water. In addition there may be water loving sodium and potassium exchangeable ions on the surfaces. These ions are the result of defects in the silicate and aluminate structure in the aggregate. In the silicate structure there may be an aluminum atom instead of silicon resulting in a structural negative charge. Likewise a magnesium atom may replace aluminum in the aluminate structure.

To combat this, amines or lime can be added to change the nature of the aggregate surface. Unfortunately, the protection may not last, especially if salt or magnesium chloride is used for deicing. The chemical principle of mass action can reverse the action of these antistrips. One solution has been to graph onto the aggregate surface an organosilicon material that actually becomes an integral part of the aggregate and thus cannot be dislodged. The aggregate then changes allegiance so strongly that it actually forcibly rejects water and opens its pores to the asphalt.

So to control raveling, the adverse affect of water must be controlled. This is especially important with raveling as it occurs on the surface where the pavement will be often in contact with water. The best solution is to persuade the aggregates to distain the advances of their first love and turn to a new one that is not so transparent.

Robert L. Dunning, chemistdunning@gmail.com, www.petroleumsciences.com

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s