WORLD OF PAVEMENT CRACKING

Fundamentals of Non-Load Associated Cracking

There has been considerable research on the engineering basis of pavement cracking. Those interested in some of the basic studies on cracking might consult volume 41 (1972) of the Proc. Association of Asphalt Paving Technologists. Many of the concepts develop there were the basis of the PG grading system with regard to low temperature properties of asphalt. While those papers are 40 years old, they lay the basis of technical progress in understanding cracking. Later studies have been oriented toward understand how cracking can be predicted.

However, it is not the purpose of this blog to go into the engineering of pavement design but rather to speak of the basic physics involved.

Failure occurs either from tensile stress or crack propagation. The maximum tensile strength of asphalt and hot mix is about 1000 psi and that only happens if the asphalt is cold or stressed at a high rate. At higher temperatures or lower rates of strain the stress at failure would be less. When cracks appear, the stresses are concentrated at the apex of the crack accelerating the formation of a crack. Thus no matter what the crack might look like, it is caused by too much tensile stress.

Literature suggests that when the temperature drops down below about 100-110°F of the softening point of the asphalt in pavement one would expect damage to the pavement. That damage accumulates eventually resulting in transverse cracks showing up. The distance between cracks is related to hardness of the asphalt. If the temperature rapidly drops to, perhaps, 150° F below the softening point, the crack may occur that day. I actually observed that in the late ‘80s. There had been a very sharp drop in temperature in Spokane, Washington on one day. I was called in for several cases where even fairly new pavements showed block (traverse) cracking, including a new tennis court. The only answer was that the temperature drop had caused it.

If we recognize that the softening point of aged asphalt might approach 200° F it can be seen that the fast drop in temperature in deserts at night could even cause damage at surprisingly higher temperatures. Pavements can reach over 170° F in the deserts.

The effect of crack propagation can be seen in parking lots where asphalt pavement is adjacent to a portland cement area where there are 90° corners. A crack will be seen radiating out of the corner even if there is no other evidence of cracking in the pavement. If small cracks are formed inside a pavement and don’t heal themselves, they will grow and eventually show up.

When cracking occurs, the asphalt in a pavement is no longer performing as a liquid, but more as a solid. It responding to stress from cooling by pulling apart horizontally. When the pavement heats up again, the crack remains, although if they are small, traffic can knead them back together. If it can act as a liquid it flows vertically upward as the temperature increases and downward as the temperature decreases. The solution to cracking is to allow the asphalt to retain its liquid properties as long as possible.

As asphalts from different crude sources behave differently, there is no golden rule. Non-electrolytic solution chemistry can be involved but that is a discussion for another day.

One of the remedies for reducing the temperature related cracking in pavements is to seal them so that the rate of hardening of the asphalt is reduced. Also the HMA needs to be protected from water, both liquid and vapors. Even in the desert water accumulates under the pavement. If the bond between the asphalt and aggregate is susceptible to being compromised by the presence of water, the bond will be broken and failure will occur. Traffic accelerates the loss of strength as water propelled by changing pore pressure scours the asphalt off of the pavement. Even water vapor has been seen to do this. Weakening the bond between rock and asphalt will then be allowed to grow under less stress.

I also like to see primes used under the pavement to discourage water from entering the mix. Reducing the rate of hardening of the asphalt so it retains its liquid properties and protecting the pavement from water damage can reduce the rate of formation of non-load associated cracks.

Robert L. Dunning, chemistdunning@gmail.com, www.petroleumsciences.com

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s